A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode

نویسندگان

  • Wenwen Deng
  • Xinmiao Liang
  • Xianyong Wu
  • Jiangfeng Qian
  • Yuliang Cao
  • Xinping Ai
  • Jiwen Feng
  • Hanxi Yang
چکیده

Current battery systems have severe cost and resource restrictions, difficultly to meet the large scale electric storage applications. Herein, we report an all-organic Na-ion battery using p-dopable polytriphenylamine as cathode and n-type redox-active poly(anthraquinonyl sulphide) as anode, excluding the use of transition-metals as in conventional electrochemical batteries. Such a Na-ion battery can work well with a voltage output of 1.8 V and realize a considerable specific energy of 92 Wh kg(-1). Due to the structural flexibility and stability of the redox-active polymers, this battery has a superior rate capability with 60% capacity released at a very high rate of 16 C (3200 mA g(-1)) and also exhibit an excellent cycling stability with 85% capacity retention after 500 cycles at 8 C rate. Most significantly, this type of all-organic batteries could be made from renewable and earth-abundant materials, thus offering a new possibility for widespread energy storage applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode

The magnesium-metal battery, which consists of a cathode, a Mg-metal anode, and a nonaqueous electrolyte, is a safer and less expensive alternative to the popular Li-ion battery. However, the performance of Mg batteries is greatly limited by the low electrochemical oxidative stability of nonaqueous electrolytes, the slow Mg diffusion into the cathode, and the irreversibility of Mg striping and ...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

A Safer Sodium‐Ion Battery Based on Nonflammable Organic Phosphate Electrolyte

Sodium-ion batteries are now considered as a low-cost alternative to lithium-ion technologies for large-scale energy storage applications; however, their safety is still a matter of great concern for practical applications. In this paper, a safer sodium-ion battery is proposed by introducing a nonflammable phosphate electrolyte (trimethyl phosphate, TMP) coupled with NaNi0.35Mn0.35Fe0.3O2 catho...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013